music.structures.peals package

Submodules

music.structures.peals.base module

class music.structures.peals.base.GenericPeal

Bases: object

act(peal, domain=None)
actAll(domain=None)

music.structures.peals.peals module

class music.structures.peals.peals.Peals

Bases: music.structures.permutations.InterestingPermutations

Use permutations to make peals and represent peals as permutations.

Core reference:
Also check peal rules, such as conditions for trueness.
  • Wikipedia seemed ok last time.
TwentyAllOver()
anEightAndForty()
transpositionsPeal(permutation, peal_name='transposition_peal')
music.structures.peals.peals.printPeal(peal, hunts=[0, 1])

Print peal with colored numbers. Hunt have also colored background

TODO: documentation

music.structures.peals.plainChanges module

class music.structures.peals.plainChanges.PlainChanges(nelements=4, nhunts=None, hunts=None)

Bases: object

Present plain changes as swaps and act in domains to make peals

http://www.gutenberg.org/files/18567/18567-h/18567-h.htm

act(domain=None, peal=None)
actAll(domain=None)
initializeHunts(nelements=4, nhunts=None)
performChange(nelements, hunts, hunt=None)

Perform change procedure from ‘hunt’ on to subsequent hunts.

Return permutation of the change and the hunts dictionary. Peals should be classified by restrictions satisfied by permutations between changes:

  1. canonical peal: only adjacent swaps allowed. E.g. plain changes, twenty all over.
  2. semi-canonical peal: only adjacent chunks are displaced, at least one permutation needs more than one swap. E.g.: rotations, mirrors.
  3. free peal: at least one permutation displaces non-adjacent indexes. E.g. paradox peal, phoenix peal, any nondihedral?
performPeal(nelements, hunts=None)

Module contents